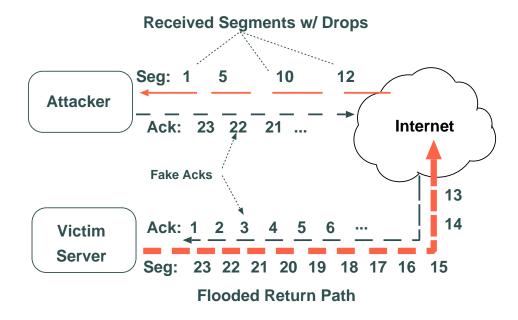
Overlay-based Active Monitoring and Security



Bobby Bhattacharjee Tuna Guven Christopher Kommareddy Richard La Mark Shayman Vahid Tabatabaee University of Maryland

A minor aside

• The Schnell attack on TCP

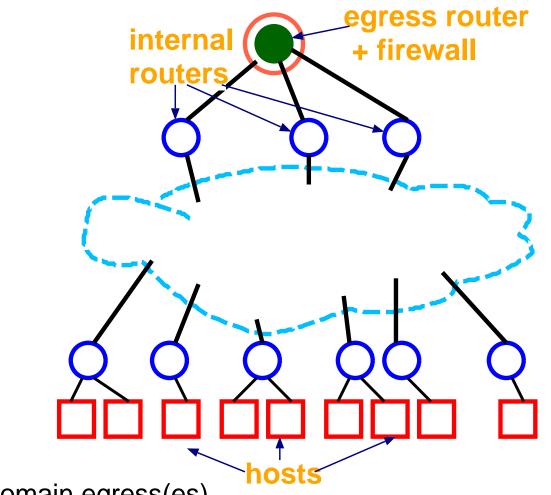
with Rob Sherwood

 Attack network core by causing well-provisioned servers to send lots of traffic (GBs) into the core by sending fake TCP ACKs

Is this feasible?

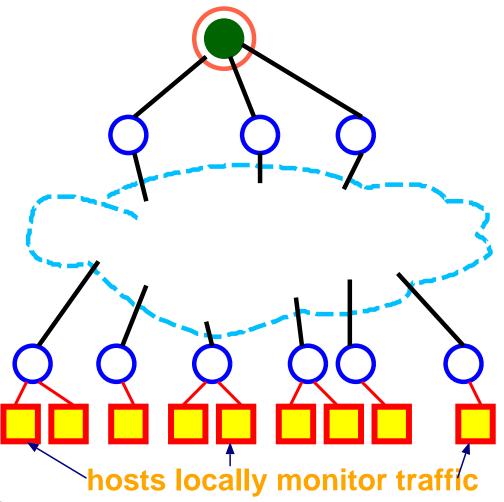
- The ACK estimating etc. has been implemented real attack: 128 Kbps user causes server to send 32 Mbps.
- Good news: there is an elegant fix (See TR)
- Bad news: There are probably other Schnells ...
 - ... and of course all other well known attacks
- Lot of fixes require Internet-wide deployment of new functionality

Not clear if this is feasible or practical, in the short or the long term

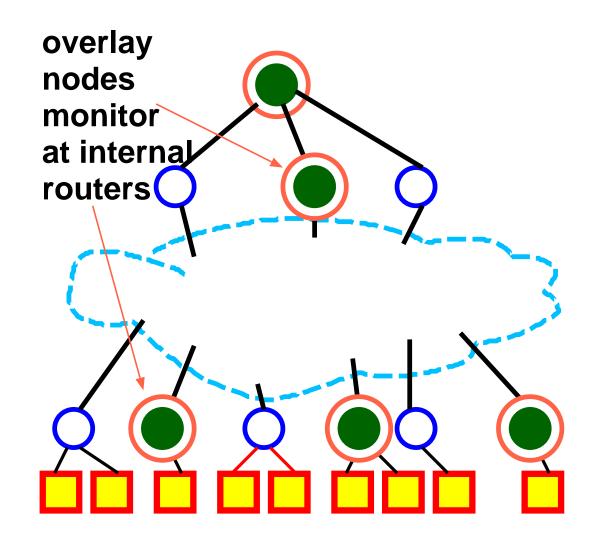

Inter-domain Monitoring and Security using an Overlay

• Monitor and stop attacks at the *source* of the attack

source \equiv first domain not entirely controlled by attacker

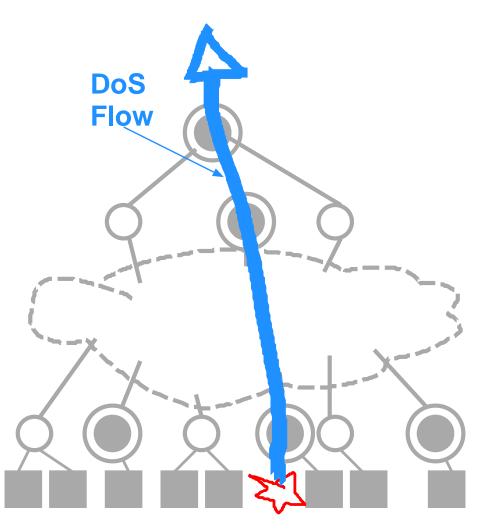

- Most efficient solution attacks are stopped before they can do much damage
- Does not require Internet-wide deployment
- Shares the cost of attack monitoring and prevention

Approaches


• Firewall at the domain egress(es)

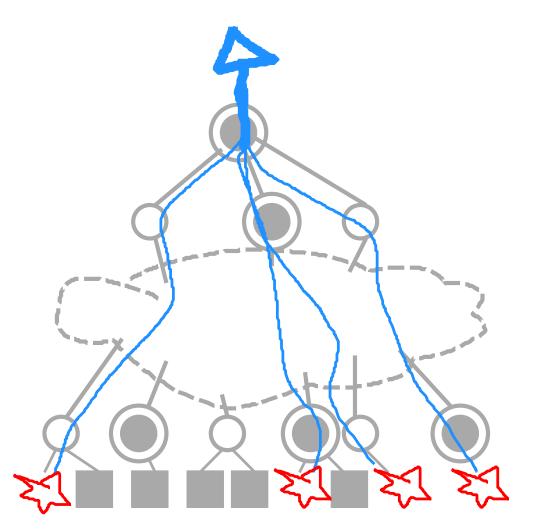
Approaches

• Monitor at each host


Approaches

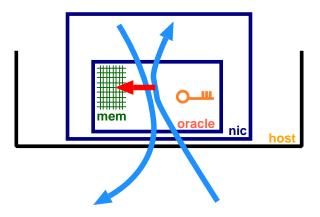
• Overlay-based

Solution components — new ideas


• Coordinate and Correlate information between nodes

Solution components — new ideas

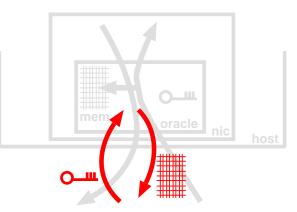
• Coordinate and Correlate information between nodes



Local Oracle (Hardware)

- Pass-through processor on NIC with a physically secure key \mathcal{K} Cannot be controlled via host software
- Passive monitor of all network traffic

Logs (compressed) all traffic [headers+snippet]



Local Oracle (Hardware)

- Pass-through processor on NIC with a physically secure key \mathcal{K} Cannot be controlled via host software
- Passive monitor of all network traffic

Log requires 1 MBytes storage per minute of data (avg.)

worst case 1 order of magnitude worse.

• Log dumped to sender when packet with ${\cal K}$ intercepted

Consider adding rudimentary filtering instead of log dump?

Local Oracle (Hardware)

- Pass-through processor on NIC with a physically secure key \mathcal{K} Cannot be controlled via host software
- Passive monitor of all network traffic

Log requires 1 MBytes storage per minute of data (avg.)

worst case 1 order of magnitude worse.

Attackers (can) know of the oracle, but cannot modify its operation

What can such a system do ...?

- Detect different attacks DoS, malicious packets
 - More capable than single node systems
 - Aggregation of local information towards root \rightarrow correlation
 - Adaptively locate problems towards leaves \rightarrow refinement
- Complete single packet traceback (using local oracle)

does not require global deployment

So, is distributed monitoring really necessary?

• Consider current hardware

OK, say only 1 Tbps access link [~1 ns/avg.packet]
Even Gbps links must be serviced in 320 ns
SDRAM acces times [10 ns*]; expensive
L1 caches [<1ns access]; prohibitively expensive

• Implications:

Extremely limited per packet processing Infeasible to keep per flow state Incomplete information [sampling]

So, is distributed monitoring really necessary?

Answer: Yes.

Multi-node solutions provide exponential benefit

Example: Detection of a single DoS flow

- Assume binary tree topology, one op. per packet [worst case for multi-node]
- Assume N flows, mapped to k bins

Single node, in one round

reduces # of suspected nodes to N/k

• Suppose, instead, we have t overlay nodes (anywhere on path) Worst case, in one round + 1 prop. delay # suspected flows reduced to $\frac{N}{2^t k^t}$ Overhead: 1 bit/packet inline, or O(t) extra comm.

Example: Detection of a single DoS flow

• Assume 100K flows, 1024 bins

Single node, in one round

of suspected flows — 100

 With overlay monitoring, suppose 1M flows and only 100 bins per node

monitors: 2 3# suspected flows: 244 <1

 With 1000 bins per node, 3 nodes can detect 1 in 8 billion flows in 1 round of detection + communication

Summary: General Approach

- Overlay Communication infrastructure provides general primitives such as multicast, naming useful beyond monitoring/security
- Specific statistical tests implemented in a distributed manner using comm. primitives over input data primarily borrow from existing literature
- Input data locally generated for specific tests/attacks defined by environment, node capabilities, range of attacks

Current work and Future Directions

 Tests for various types of DoS attacks, and also a traceback mechanism

- Ideally, we'd like to **BUILD** the local oracle hardware
- Extend current work to handle multiple egresses
- Fully develop general approach with multiple examples of tests and distributed statistical computations
- Develop more tests possibly extending into virus detection