Wireless Review- Probing

William Arbaugh University of Maryland

Joint work with students

- Min-ho Shin
- Arunesh Mishra

OUTLINE

- Motivation & Background
- Neighbor Graph
- NG / NG-prune probing algorithm
- Experiment/simulation results
- Conclusion

Motivation

- Hand-off latency is critical in WLAN infra.
 - small coverage
 - demand for multimedia or realtime applications
- High hand-off latency is observed
 - 60 ~ 400 ms, 252 ms on avg, in experiment
 - expected to increase with 11i authentications
- Probing latency > 90% of hand-off latency
- Reducing probing latency is important

What affects probing latency

- Number of channels to probe
 - Standard doesn't define
 - naive : all 11 channels (Full-scanning)
 - only used channels (Observed-scanning)
- Waiting Time for probe response
 - Standard defines
 - MinChannelTime / MaxChannelTime

- MinChannelTime when no AP respond
- MaxChannelTime when any AP respond

OUTLINE

- Motivation & Background
- Neighbor Graph
- NG / NG-prune probing algorithm
- Experiment/simulation results
- Conclusion

Neighbor Graph

Definition

- [Mishra, Shin, Arbaugh, INFOCOM 2004]
- NG dynamically learns the mobility patterns
- $NG = \langle V, E \rangle$, a directed graph
 - V: set of all APs
 - (AP_i, AP_j) is in E iff a station can hand-off from AP_i to AP_j
- Distributed data structure
 - AP maintains the list of neighbor APs

Neighbor Graph

Generation

Personal Neighbor Graph (PNG)

Neighbor Graph (NG)

<u>Neighbor Graph</u> Dynamic Mobility Pattern

- edge-deletion
 - deprecated path
 - AP failure/removal
- edge-addition
 - AP restore/install
 - new path

OUTLINE

- Motivation & Background
- Neighbor Graph
- NG / NG-prune probing algorithm
- Experiment/simulation results
- Conclusion

NG probing

- Key ideas
 - Probe only neighbor channels
 - Wait for only neighbor AP's response

NG-prune technique

- By NG probing, STA waits for MaxChannelTime
- AP2 and AP4 don't overlap
- If STA knows Ap2 and AP4 doesn't overlap, STA no longer waits for response from AP2 as soon as AP4 responds
- Use non-overlap graph

NG-prune

Example

- Channel 1 : 1*RTT
- Channel 6 : 1*RTT
- Channel 11: 0
- Reduce both probe-count and probe-wait time

NG-prune

Comparison

- Full Scanning :
 - 2*MaxCT+9*MinCT
- Observed Scanning :
 - 2*MaxCT+1*MinCT
- NG probing
 - 1*Max + 1*Min + 1*RTT
- NG-prune probing
 - 2*RTT

OUTLINE

- Motivation & Background
- Neighbor Graph
- NG / NG-prune probing algorithm
- Experiment/simulation results
- Conclusion

Experiment

- 20 Cisco 350 APs over two floors using channel 1, 6,11
- Avg # of neighbors = 3.15
- STA using laptop with Prism2 based wireless card
- Probing algorithm implemented in driver & user roaming program
- Full / observed scanning, NG / enhanced-NG

Fig. 4. Generated Neighbor Graph (solid arrows) and Overlap Graph (solid and dashed lines)

Conclusion

- New efficient probing algorithms (NG/NG-prune probing) and evaluated by experient and simulations
- Performance improves
 - as # of indep. channels increase (802.11a)
 - as density of access points increase (# of neighbor increase)

Summary of Publications

- Mishra, Shin, Petroni, Clancy, Arbaugh, "*Proacti ve Key Distribution Using Neighbor Graphs*," IEEE Wireless Communications, vol. 11, Februar y 2004.
- Shin, Mishra, Arbaugh, "An Efficient Handoff Sch eme in IEEE 802.11 using Neighbor Graphs," MobiSys 2004.
- Mishra, Shin, Arbaugh, "Context Caching using N eighbor Graphs for Fast Handoffs in a Wireless N etwork," INFOCOM 2004, March 2004.

Questions?

Back up slides

NG-prune

Non-overlap Graph

- Overlap Graph(OG) is an undirected graph
 - $\langle V, E \rangle$; V = set of access points
 - $\langle AP_i, AP_i \rangle \in E$ if their coverages overlap
 - APi, APj overlap $\Leftrightarrow S_i(x) \ge T_h \land S_j(x) \ge T_h$
- Non-overlap $Graph(NOG) = OG^{c}$
- OG is easier to generate than NOG
- Also distributed structure stored at each AP

Simulation Model

- Identical coverages
- Randomly chosen :
 - # of neighbors
 - positions
 - STA's direction
- Optimaly chosen channel assignments
- Variables
 - # of Nb : 2,3,...,8
 - # of Chnl : 3,5,8,12

