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Outline

• FEC Code Design: RCD Code - subset of LDPC Codes

• Channel Models for FEC Code and Decision Circuit

• Performance (Ideal) Assessment via Bounds and Simulation

• Performance (Non-Ideal) Assessment via Implementation Issues
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FEC Code Design: RCD Codes

• Subset of Regular LDPC Codes  

• Decodable via Variety of Decoder Schemes
w/ Choice Driven by Performance vs. Technology Trade-offs

§ Majority-Logic (MLG) Decoding
§ Iterative Hard-Decision Decoding (Bit-Flipping)
§ Iterative Soft-Decision Decoding (SPA)

• High Code Rates (Low Overhead) Possible
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LDPC vs. TC Codes

• Best designed LDPC codes shown to surpass corresponding best known turbo 
codes.

• For LDPC codes, decoder failure is a detectable event.

• TCCs show an error floor at a relatively higher probability of error.  Hence, 
quite often, they require an outer code.

• LDPC decoding fully parallelizable with respect to graph nodes.
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Channel Models for FEC Code and Decision Circuit

Investigate More Accurate Models for Code/Decision Circuit Studies:

• BAC w/Chi-Square pdfs
§ Single threshold
§ Higher channel capacity
§ Requires knowing exact pdfs
§ Looking at robust (minimax) decision characterization

• BSC/E
§ Double threshold to generate erasure output plus 0 and 1
§ Higher channel capacity
§ Codes can correct more erasures than errors via (2e +f ) < dmin
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Decision Thresholds for Different Channel Models
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One-Threshold Decisioning -- BSC/BAC

BSC
BAC

ε0 = ε1 = p
ε0 ≠ ε1

PCD =
n

i
 
 

 
 

i=0

t

∑  pi (1− p)n − i

PID = 1 − PCD

~ Prob. Correct Decoding for BSC

~ Prob. of  Incorrect Decoding  for BSC
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BSC/BAC Capacity

BSC capacity is

BAC capacity is

C = 1− H p( ), p = ε0 =ε1

C = H p0(1− ε0) + (1− p0)ε1[ ] − p0H[ε0 ]  − (1− p0 )H[ε1]

where p0 = 1−
1− (1 + k)ε0

(1−ε0 −ε1)(1 + k)
         k = exp{

H (ε
1
) − H(ε

0
)

(log
2

e)(1 − ε
0

− ε
1
)
}
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10Chi-Square pdf Parameters

p1(I) =
1

N0

I
E

 
 

 
 

( M −1)/ 2
exp −

I + E
N0

 
  

 
  IM −1 2

IE
N0

 

 
 

 

 
 

p0(I ) =
1

N0

I / N 0( )M −1exp −I / N 0( )
(M − 1)!

σ1 =
Bo
Be

+ 2Q

σ0 =
Bo
Be

I1 = 2Q
Bo
Be

+ 2Q2 +
Bo
Be

I0 =
Bo
Be

Q = µ1 − µ0( )/ σ1 + σ 0( )

= M
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Optimal Decision Thresholds (αopt) vs. β and M

Chi-square pdfs α = I N0 β = RcEb N0
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Channel Capacity vs. β and M using αopt

α = I N 0 β = RcEb N0
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Average Pe as a Function β and M

α = I N0 β = RcEb N0
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Two-Threshold Decisioning - BSC/E

CBSC /E = −(1− α) log2

1−α
2

 
 

 
 + 1−α − β( )log2 1− α − β( )+ β log2 β  

                                                            

α = Q  
−t + 1

σ
 
 

 
 − Q  

t + 1
σ

 
 

 
 

β = Q  
t + 1
σ

 
 

 
 

Q(x) =
1
2π

e
− t 2

2

x

∞

∫ dt

t = 0 ~  BSC
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Capacity of BSC/E vs. t and CSNR
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Shannon Limit Curves - BSC/E
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Shannon Pe vs. Eb/N0 Lower Limit Curves - BSC/E

t=0 ~ BSC
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Shannon Pe vs. Eb/N0 Lower Limit Curves - BSC/E

t=0.15 ~ BSC/E
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19FEC Decoding for the BSC/E

Hard-decision decoding algorithms for the BSC can be suitably modified
to perform decoding for the BSC/E.

Begin with a bounded distance decoder for the BSC and received word w.

1. Replace every location in w that has an erasure with 1 and decode to obtain a resulting 
codeword c1.

2. Then replace every location in w that has an erasure with 0 and decode to obtain a 
resulting codeword c0. 

3. Compute the Hamming distance between the pair w and c1 and the pair w and c0.

4. Choose c1 as the decoder output if its Hamming distance from w is less than that of c0
from w. Else choose c0.

Note: An erasure in w contributes equally to both Hamming
distances.
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FEC Decoding for the BSC/E

The preceding decoder for the BSC/E can correct all patterns of 
e errors and f erasures as long as  (2e + f ) < dmin.  Hence it is a  
bounded distance decoder for the BSC/E.

PCD =
n
f

 
 

 
 e, f ≥ 0;(2e + f )< dmin

∑ n − f
e

 
 

 
  α

fβ e(1− α − β )n − f − e

PI =1− PCD

~  Prob. of Correct 
Decoding

~ Prob. of Incorrect 
Decoding
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(t) vs. CSNR Plots

n = 49

dmin = 6

RCD SPC

lo
g 1

0(
P

I)

  

≈ 0.8 dB
6 7 4 8 4 

=* 0.15t

≈ 3 orders 
 
 

For Rc= 0.6122

Shannon Limit for 
BSC (CSNR)      
= 3.12 dB

and

Shannon Limit for 
BSC/E (CSNR) 
with t* = 0.15      
= 2.61 dB
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22PI
(t) vs. CSNR Plots

n = 289

dmin = 6

RCD SPC

lo
g 1

0(
P
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≈ 0.6 
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For Rc= 0.8304
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BSC (CSNR)      
= 5.83 dB
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Shannon Limit for 
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with t* = 015         
= 5.25 dB
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23PI
(t) vs. CSNR Plots
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dmin = 17
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BAC/AE Channel Model

1-α1−β1

1-α2−β2

α1

β1

β2

α2
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Related Conclusions

• Using two-thresholds (BSC/E) provides coding and capacity gains
over the one-threshold (BSC).

• Gains achieved by only doubling decoding and decisioning complexity.

• Improvements in employing a BSC/E channel model:
§ Decrease with increasing n and dmin

§ Decrease with increasing PI
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Performance (Ideal) Assessment

via Bounds and Simulations

• Union Bound on BER/WER vs. Eb/No requires Weight Enumerator 
Function (WEF) for Code

• Simulations for BER/WER vs. Eb/No require major computing
power/time, or modified importance sampling (IS)

~ Multicanonical Monte Carlo technique under investigation

W(z)= Adzd,        {Ad}d=0
n∑ ~ WEF coefficients
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Error Correction Capability wrt  dmin (BSC)

PE = Ad  
d =d min

n

∑ Pk
d

k = 0

t

∑

Pk
d =

d

k − m

 
 

 
 

m = 0

k

∑ n − d

m

 
 

 
 p

d − k +2m 1− p( )n −d + k −2m

PCD =
n

i
 
 

 
  

i=0

t

∑ p i (1− p) n − i

~   Prob. Decoder Error

~  Prob. Correct Decoding

PF = 1 − PCD − PE ~   Prob. Failure

Weight distribution Bounded distanced decoding (BDD)
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Water-Fall and Error-Floor Behavior

SNR (dB)
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The RCD code WEF is given by

W z( )=  2− 3η −2( )
1 + z( )η 2

              • η aηb

η − b

η

η − c

η
pµ

1 − z

1 + z

 
 

 
 

ω η l,µ

∆ l,ν

 
 

 
 

1 − z

1 + z

 
 

 
 

−2∆ l,ν Il ,µ

l=1

Lµ

∏
ν =1

Nµ ,c

∑
µ =1

K a ,b

∑
c= 0

η −1

∑
b=0

η −1

∑
a=0

η

∑

RCD-LDPC Code WEF



University of Maryland Baltimore County

30RCD-LDPC Code WEF Plots

WEF plots for RCD codes of n = 49 and 121
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31dmin (= d6)  Component of RCD WER

PE = Ad  
d= dmin

n

∑ Pk
d

k =0

t

∑
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Related Conclusions

• Solution for WEF for a class of LDPC codes obtained
• Results show the RCD-LDPC codes are weakly-random-like 

codes with WEF approximately Binomial for moderate code 
lengths n

• Technique likely extendable to related classes of LDPC codes
• Important for WER/BER vs. SNR performance assessment
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Performance (Non-Ideal) Assessment

via Implementation Issues

• Effect of Mismatched/Incorrect Decision Circuit Statistics 
on SPA
§ Incorrect estimate of initial statistics

§ Time-varying statistics

• Effect of Logic Circuit Errors on Majority-Logic Decoding
e.g., optical logic devices have appreciable error rates
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SPA Sensitivity to Channel Noise Assumptions

• We define                where,

= assumed noise variance for APP computation

= true noise variance on channel

• is set during initialization

α = σa
2

σ t
2

σ a
2

σa
2

σt
2
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Surface Plot of WER vs. α   and σt
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Related Conclusions

• Performance of SPA is sensitive to changes in noise variance      .

• WER and BER were observed to be “asymmetrical” about when       is 
fixed. 

• Results indicate the range of inaccuracy allowable in estimating        to 
achieve a given performance tolerance.

• There is a broad minimum for WER wrt      where WER remains within twice 
that at           when       is fixed.

• Increase in WER is more rapid beyond this range.

• It may be advantageous to assume a        that is  1.05 - 1.1 times that of the 
true value during initialization -- yields a more “symmetrical” performance
wrt noise variations.

α  =1

α
α =1

σ 2

σ 2

σ 2

σ 2

σ 2
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Logic Circuit Errors: Motivation

• Traditionally, logic devices such as OR, AND, XOR-gates have been 
assumed to perform perfectly without introducing any errors at the 
output. 

• However, for CMOS devices, as they approach the fundamental 
physical limits, or for logic devices implemented in the optical
domain, this assumption may no longer be true. 

• More stringent requirements on the probability of error that can be 
tolerated on communication channels may also render this 
assumption tenuous, e.g., optical channels demand a BER of ~10-15.
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Error Model for Simple Logic Devices

• Probability transition matrices can model errors introduced 
by logic devices.

• 2-inp XOR gate
§ 4 i/p states

§ 2 o/p states

011

101

110

000

OpIp 2Ip 1

    

         0 0                0 1               1 0               1 1
0
1

1- p(1|00) p(1|01) p(1|10) 1- p(1|11)
p(1|00) 1 - p(1|01) 1- p(1|10) p(1|11)

 
  

 
  
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Analysis of Error Introduced by a Logic Circuit System

• Simplest technique: Find probability of correct output (Pc ) for each logic 
device from its transition matrix. Probability of error at the output of the 
logic circuit, (PE ) is given as

• For a more accurate analysis, one has to determine the overall transition 
matrix that relates the output of the logic circuit to its inputs.

• Logic circuit specific
• May not be easy
• Need to exploit whatever independence  exists among input variables

PE = 1 − PC
All logic devices

∏
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Related Conclusions

• Logic gates with internal errors, particularly optical logic gates, can 
affect the error performance of MLG decoders

• Similar effects expected for other logic circuit systems

• An analysis method is under development, based on a probability 
transition matrix approach.
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