Measurement-Based Dynamic Traffic Engineering Using Overlay Architecture

Students: Tuna Guven and Chris Kommareddy Faculty: Bobby Bhattacharjee, Richard J. La, and Mark A. Shayman LTS Review June 27th, 2003 Introduction

- Routing in the Internet
 - Problems with Shortest Path Routing
 - Inefficient use of network resources
 - Limited control capabilities
 - Modifying link metrics tends to have network wide effects. i.e., possibility of undesirable and unanticipated traffic shifts.
 - Lacking the capability of load balancing between *different cost* paths.
 - Unable to consider traffic/policy constraints. e.g. avoiding certain links for certain source-destination pairs.
 - Multi-path Solutions

Existing Algorithms

- Multi-path Solutions
 - Existing optimal multi-path algorithms
 - J. N.Tsitsiklis, D.P. Bertsekas *IEEE Trans. Automat. Control, 1986*
 - A. Elwalid, C. Jin, S.Low, I. Widjaja (MATE) IEEE INFOCOM, 2001
 - Both algorithms assume the availability of *analytical* cost gradient function.

 $x(k + 1) = [x(k) - a_k \nabla C(x(k))]^+$

- $\nabla C(x(k))$ is the cost gradient vector.
- Not practical due to the dynamic nature of traffic patterns in IP Networks (i.e., assumption of independent M/M/1 queues – Jacksonian Networks).
- Only noisy measurements available

Approach - Stochastic Approximation (SA)

MATE refers to this problem

- An implementation that uses estimates of the cost gradient instead of analytical functions.
- However, the theoretical analysis does not cover the estimation process at all.
- Under these conditions, the convergence of the algorithm is not guaranteed unless specific conditions are met.
- Possible solution under these assumptions:
 - Stochastic Approximation (SA):
 - A recursive procedure for finding roots of equations in the presence of noisy measurements.
 - Useful tool for finding extrema of functions.

 $x(k + 1) = [x(k) - a_k \hat{g}(x(k))]^+$

SA Overview

- Alternative SA methods based on different gradient estimation approaches:
 - Finite Differences Stochastic Approximation (FDSA)
 - Simultaneous Perturbation Stochastic Approximation (SPSA)
- FDSA:
 - Motivated from the definition of gradient
 - Each component of x(k) is perturbed one at a time and corresponding measurements are obtained.
 - i^{th} component of $\hat{g}(x(k))$ is given by:

$$\hat{g}_{i}(x(k)) = \frac{y(x(k) + c_{k}e_{i}) - y(x(k) - c_{k}e_{i})}{2c_{k}}$$

• Remark: Implementation presented in MATE relies on the FDSA idea.

SA Overview – Simultaneous Perturbation SA

- SPSA:
 - All elements of x(k) are randomly perturbed together to obtain two measurements y(.).
 - Each component of $\hat{g}(x(k))$ formed from a ratio :

$$\hat{g}_i(x(k)) = \frac{y(x(k) + c_k \Delta_k) - y(x(k) - c_k \Delta_k)}{2c_k \Delta_{ki}}$$

where Δ_k is the random perturbation vector with a specific random distribution satisfying necessary conditions.

 The measurements can be noisy as long as the difference of the noise terms have zero mean.

SPSA vs. FDSA

- Benefits of SPSA over FDSA:
 - SPSA algorithm requires only two measurements independent of number of parameters being optimized, while FDSA uses 2p measurements to approximate the gradient, p being the dimension of the gradient vector.
 - It has been shown that under reasonably general conditions, SPSA and FDSA achieve same level of statistical accuracy for a given number of iterations even though SPSA uses p times fewer function evaluations than FDSA.
 - Result confirmed in many numerical studies, even in cases where p is on the order of several hundreds or thousands.

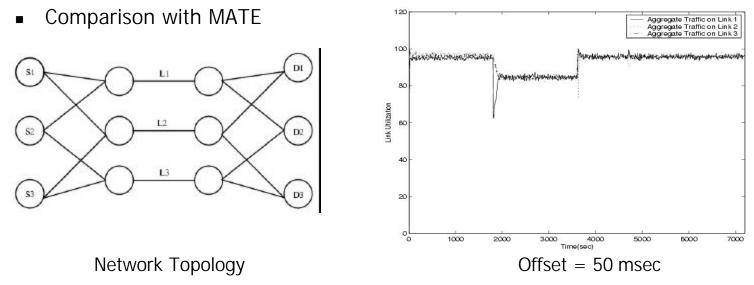
SPSA-Based Multi-Path Routing

- Promising results from the routing problem point of view
 - Considering that each measurement is costly and time-consuming in a networking environment, use of SPSA in the multi-path routing problem suggests fast response to changing networking conditions than the existing methods.
 - With some technical modifications, SPSA algorithm perfectly fits to the optimal routing problem.
- The Proposed Optimal Multi-path Routing Algorithm:
 - Each source-destination (SD) pair runs the SPSA algorithm independently and asynchronously to minimize the cost along its paths.
 - Only the local state information obtained from the paths between the SD pair is needed.
 - The overall system converges to the global optimum.

Measurement

- Measurement Process
 - The measurements of each SD pair overlaps in time, creating noise for each other.
 - Due to statistical characteristics of the random perturbations, the noise term created by this simultaneous operation has a zero mean and therefore does not prevent convergence.
 - As the asynchronism between SD pairs increases, the magnitude of this noise term decreases.
 - From Law of Large Numbers, it will go to zero as the number of SD pairs increases as well.
 - The gains from the reduced measurement time clearly dominates the side-effects of simultaneous operation of SD pairs.

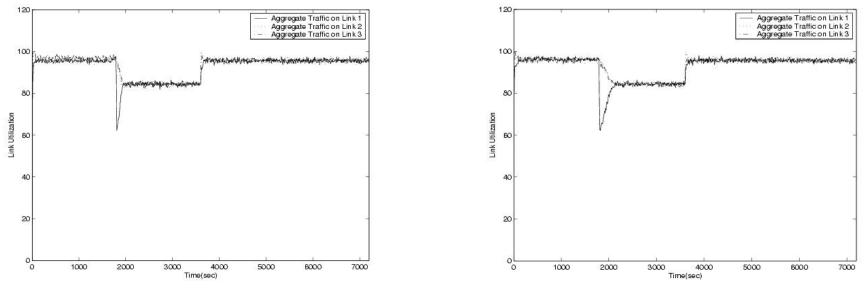
Benefits of SPSA-Based Optimal Routing


- Merits of the optimal routing algorithm
 - Distributed
 - Asynchronous
 - Depends on local state information
 - Only noisy measurement required
 - Considerably reduces the measurement time required for estimation process and achieves faster convergence. (i.e. faster response to changes in the network conditions.)

Applications

- Implementation
 - Overlay routing
 - Establishment of alternative paths between SD pairs by relaying packets along the overlay paths
 - Efficient distribution of local state information to the source nodes.
 - MPLS based networks
 - Can be implemented in MPLS based networks as well.

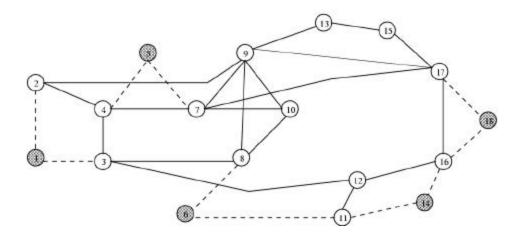
Simulation Results – (1)


Experiments

- Three SD pairs, each having two alternative paths.
- SD pairs start running the optimal algorithm independently at a random offset time.
- All links are 45 Mbps.

Simulation Results – (1) cont'd

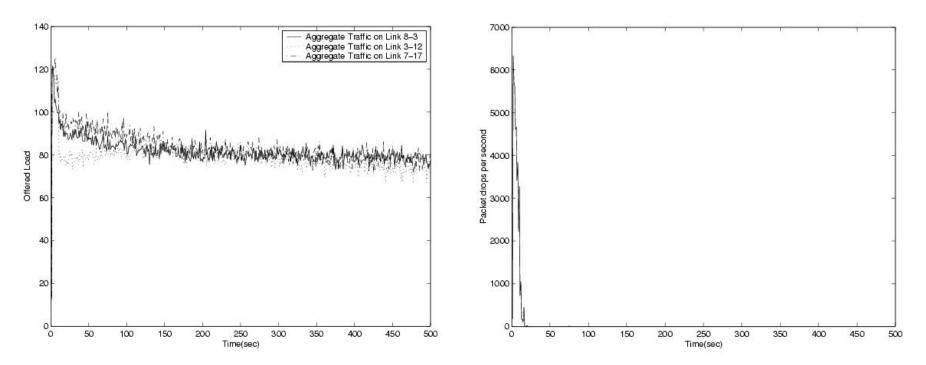
- Experiments
 - Effect of Increasing Asynchronism



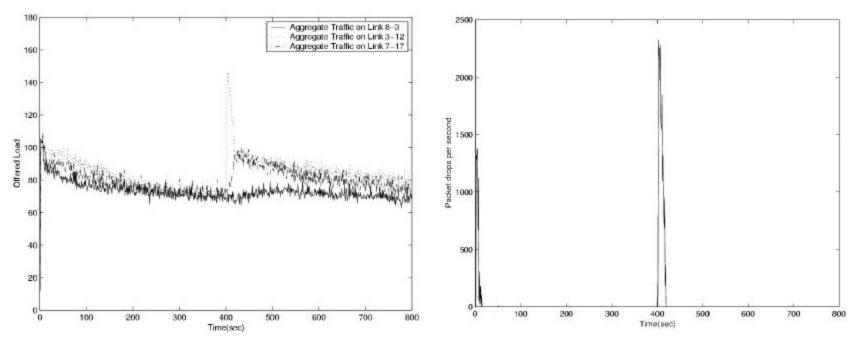
Offset = 0.2 sec

Offset = 0.5 sec

Simulation Results – (2)


- Experiments
 - ISP topology analysis

- Nodes 1,5,6,14 and 18 are SD nodes (i.e. 20 SD pairs).
- Dashed links are 50 Mbps, Solid links are 20 Mbps.
- Each SD pair has at least three alternative paths established using overlaying idea.
- Each SD pair creates 12 Mbps Poisson traffic.


Simulation Results – (2) cont'd

- Experiments
 - Effect of Multiple SD pairs working simultaneously

Simulation Results – (2) cont'd

- Experiments
 - Effect of uncontrolled cross traffic
 - Same setup except SD pair Poisson rate is 10.5 Mbps.
 - At 400 sec, cross traffic enters at link 3-12

