

GMPLS Actively Managed WDM Testbed

Y. J. (Ray) Chen Department of CSEE, UMBC Ychen@umbc.edu

Objective

Actively managed GMPLS Network

- Actively managed reconfigurable WDM optical network
 - » Ultra-high capacity (~10Tps)
 - » Scalability and efficiency of bandwidth utilization
 - » Reconfiguration is buit into the traffic engineering process
- Delivery of quality of service (QoS)
 - » Capable of providing variable levels of QoS according to service level agreements (SLAs)
- Considerable resiliency
 - » Prompt detection of failures
 - » Fast protection switching/restoration
- Advanced network control and management

• Base on optical Ethernet

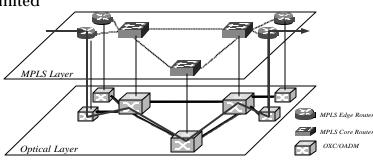
- Internet traffic is dominated by Ethernet packets
- Introduces QoS traffic engineering and Differentiated service
- Low cost line rate and Ethernet switch devices
- Very efficient packet delivery

Current GMPLS and Optical Ethernet Approaches

• Inefficiency of current GMPLS implementation

- All-optical routing in the core region of the network
 - » Coarse traffic granularity
 - » High traffic blocking rate
 - » Limited reconfiguration capability
 - » No grooming; bandwidth utilization efficiency is limited
- MPLS and optical layers are managed separately
 - » Complicates the OAM&P
- Layer 2 is passive and non-reconfigurable

• Difficulties of current Optical Ethernet

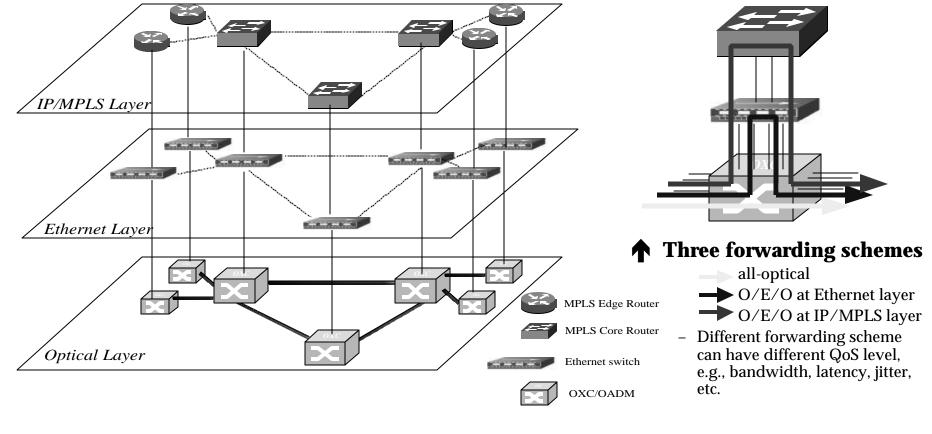

- No carrier-class QoS
- Lack of efficient OAM&P methods
- Inefficient protection/restoration schemes

• Existing improvement attempts on Optical Ethernet

- Resilient Packet Ring (RPR)
 - » Specially designed MAC for packet transport over fiber-optic rings
 - » Introduces SONET-like protection and restoration schemes to optical Ethernet
 - » Not suitable for other regular topologies, e.g., mesh topology
- Layer-3 switching
 - » Merges layer 2 switching and layer 3 routing functions to a single switch box
 - » Utilizes reconfigurable features of layer 2 to some extent

Combination of GMPLS and optical Ethernet

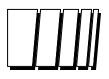
-Incorporates both QoS and resilience features of GMPLS and efficiency of Ethernet


Our GMPLS Testbed

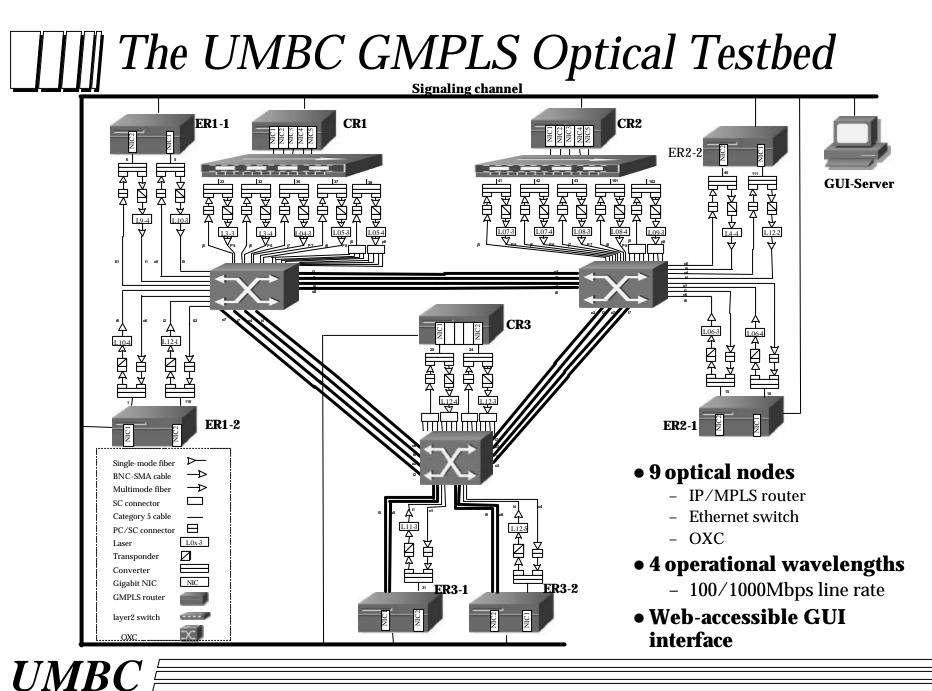
✓ Implements an Integrated Reconfigurable Ethernet (layer 2) + Optical Switching Layer

- Even with legacy Ethernet switches (routing and signaling protocols required)
- Integrated management of the optical layer and Ethernet layer through QoS traffic engineering
- ✓ Enables *traffic grooming* and *O/E/O wavelength* conversion at the core of the network
- ✓ Wavelength information and MAC addresses are utilized collectively to perform the GMPLS "label" functions

 L1 Label
 L2 Label
 MPLS Label

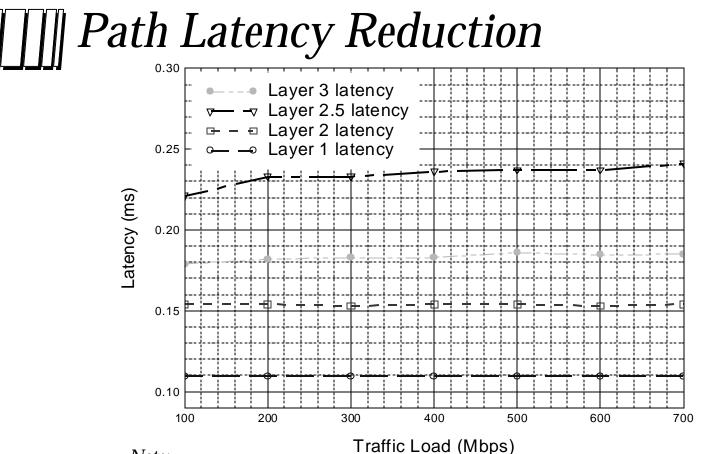

 λ
 MAC
 Label
 EXP
 S
 TTL
 →
 The label structure

QoS path provisioning


- The device performance/response parameters are calibrated for each QoS level
- QoS paths are set up according to the committed service level agreement (SLA)
- Paths can be adjusted, i.e., reconfigured, according to traffic engineering decision
- QoS path performance improvement
 - Path latency reduction
- Efficient bandwidth utilization through O/E/O wavelength conversion and traffic grooming
- Potential system cost reduction
 - Inexpensive Ethernet switch devices
 - Low cost Ethernet deployment
 - Fast service provisioning

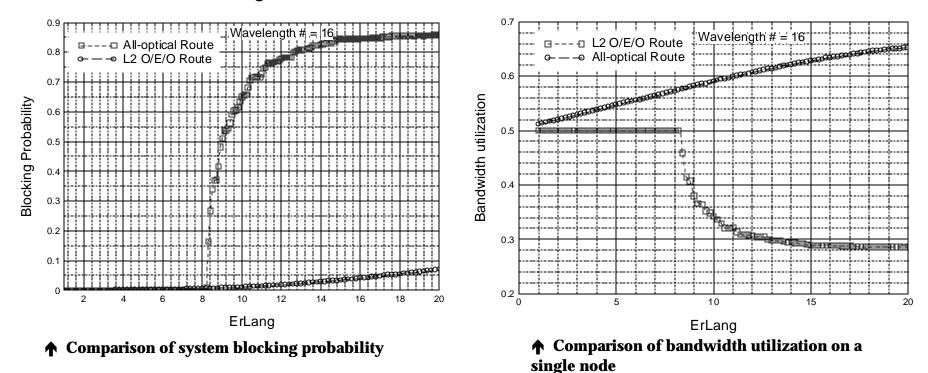
Hardware subjects for UMBC MP1S Testbed

Traffic Generator and Testing Software


- Software: based on the 3rd party software as follows
 - Netperf
 - » Used to generate background traffic
 - » Used to randomly generate traffic
 - » Used to generate multiple user sessions
 - Iperf 1.1.1
 - » Used to test the packet drop rate (PDR), Packet Jitter, User throughput
 - ICMP Ping
 - » Use to get the path round-trip latency

PC throughput capability

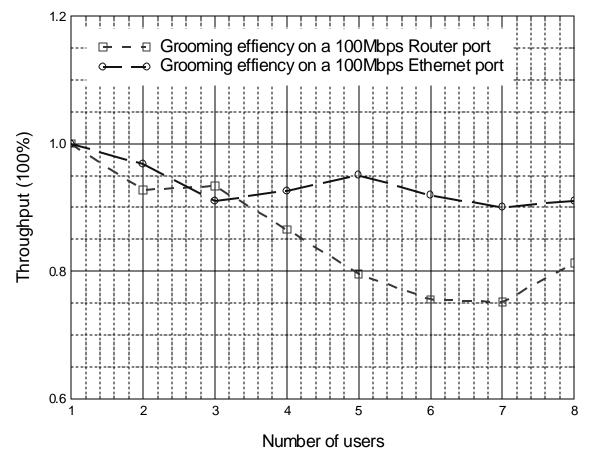
	DATA TYPE	Maximum TCP	CPU utility
		(loopback) /UDP	rate-system
		throughput	
Client	TCP STREAM	3.51G(iperf)	95%(iperf)
Dell SC600		4.1G(netperf)	95%(netperf)
CR	TCP STREAM	2.290G(netperf)	98%(netperf)
		2.2G(iperf)	92~96%(iperf)
ER3-1,ER3-2	TCP STREAM	2.231G(netperf)	96%(netperf)
ER2-2,ER2-1		2.2G(iperf)	91~94%(iperf)
Client	UDP STREAM	3.52G(iperf)	93%(iperf)
Dell SC600			
CR	UDP STREAM	2.33G	83%
ER3-1,ER3-2	UDP STREAM	2.53M	70%
ER2-2,ER2-1			


• Experiment setup: local loopback

Note:

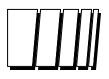
- Test results are extracted from the 9-node UMBC Optical testbed.
- Results only show single node latency.
- Equipments used in the measurement : Cisco Catalyst 3550 router, Intel 100Mbps Ethernet switch, PC-based NIST MPLS switch (Pentium 4 @ 2.0Ghz).
- In this test, Layer 2.5 latency is limited by our home-built MPLS switch. Layer 2.5 latency should be smaller if commercial MPLS switches are used.
- Real values of throughput and latency may vary, if different router/switch/OXC devices were used. However similar performance behavior is expected.

Analysis on Bandwidth Utilization Efficiency



Note:

- \bullet The comparison is based on the 30-nodes NSFNET topology assuming that each node has full L2 O/E/O capability
- Each individual bandwidth request <=2Mbps
- All traffics are Internet best-effort traffic
- All-optical : adaptive routing and first-fit (FF) wavelength assignment
- O/E/O: standard SPF calculation


UMBC

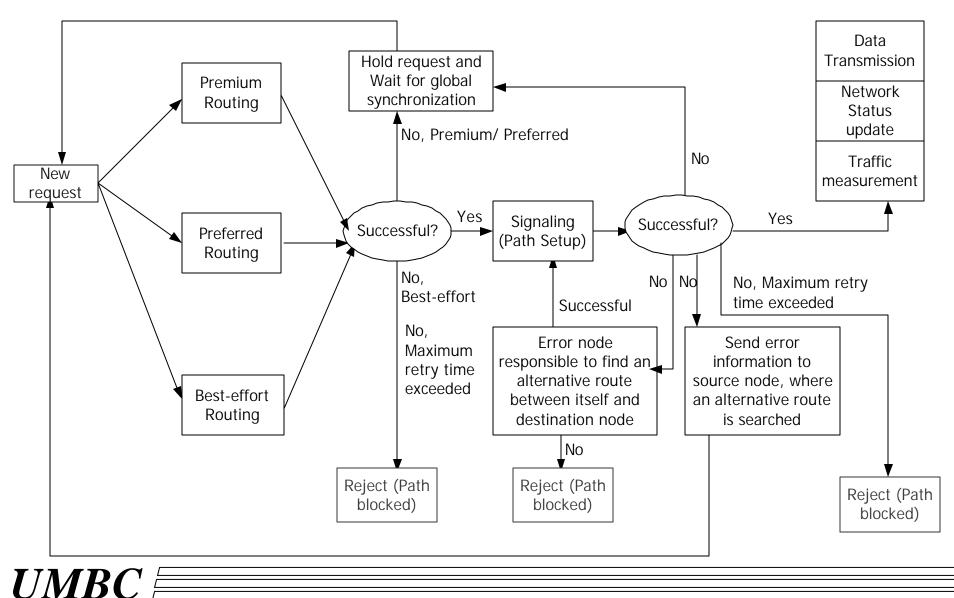
Efficiency of Traffic Grooming

Note:

- Test results are acquired from the UMBC Optical testbed
- Equipments used in the measurement : Cisco Catalyst 3550 router, Intel 100Mbps Ethernet switch
- Real values of throughput and latency may vary, if different router/switch/OXC devices were used. However similar performance behavior is expected.

GMPLS Operating System Design Issues for UMBC MPIS Testbed

The Operating System Is Based On...


- RFC GMPLS, MPLS Drafts
- FreeBSD Rel. 3.3
- NIST MPLS Switch engine
- Alternative Queuing (ALTQ)
- ReSerVation Protocol (RSVP) + TE extension
- OSPF-TE

Our Special Considerations

- We assume full network-awareness at each node
 - A cluster network environment
- The QoS condition is treated as a binary constraint
 - Bandwidth, latency, packet drop rate
- No splitting traffic

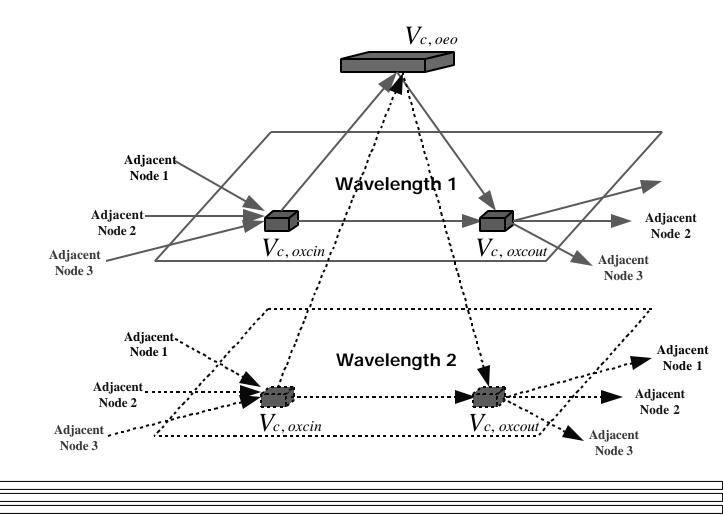
- Traffic history is not considered
 - » Routing decisions are made independent of past traffic pattern
- Dynamic cost factor model
- Routing calculations based on heuristics

Routing & Signaling Process

[]]] Routing – Dynamic Problem

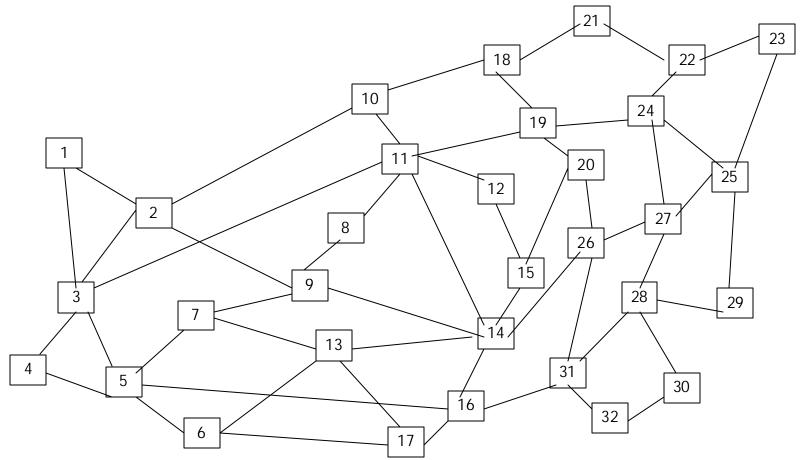
- Given
 - Current network status
 - A set of QoS requests arriving one at a time
- Objective
 - Maximize total number of successful connections
- Constraints
 - Bounded QoS for premium and preferred services
 - Wavelength continuity constraint at each fiber
 - Grooming constraint : total bandwidth of premium and preferred service at any Ethernet switch port cannot exceed the maximum physical outgoing bandwidth
 - » Assuming the Ethernet switch has DiffServ capability
 - Reconfiguration policy

IIII Routing Design


Delay-Constrained Least-Cost Routing (DCLC)

- Graph Extraction Problem
- S2 : Design of the Cost Function
- S3 : Design of the Delay Function
- S4 : Routing Heuristic

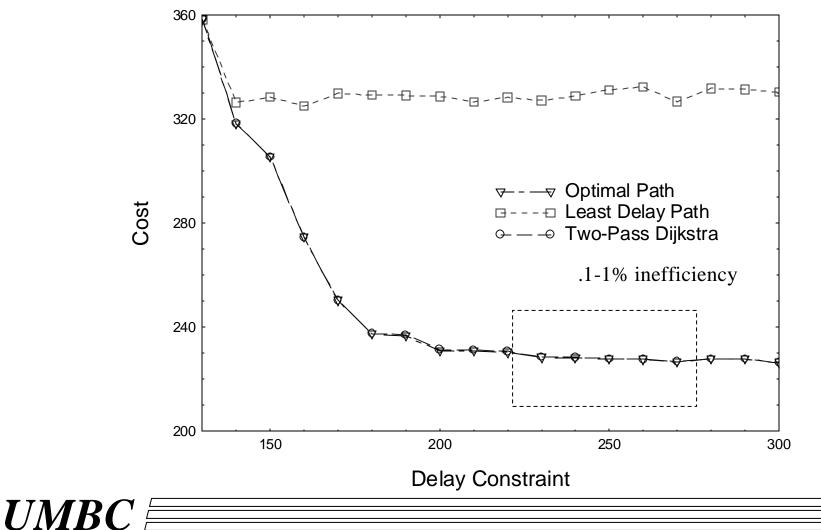
- Physical node extraction

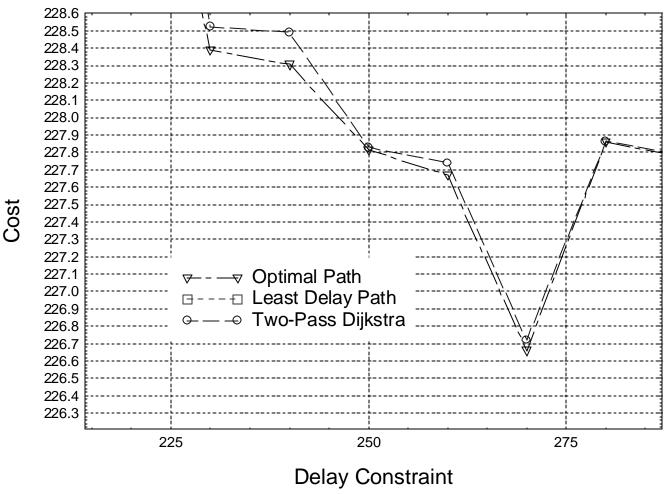


[]]] Routing – Sub-Problem 1

- S1 : Two-Pass Dijkstra for DCLC
 - First pass : calculate least delay LD*u* from every node *u* to destination node *d* and establish the feasible subset of nodes D(LD*u*') < D
 - Second pass : calculate least cost path from source *s* to *d* ; at each relaxation, count only nodes *u*' that have D(LD*u*') + delay so far <= D
 - Time complexity : O(nlog(n)+m)
 - The path found by DCLC is a feasible path

TWO-Pass Dijkstra : Simulations


- NSFNET topology (32 nodes)
- Uniformly generated cost&delay on the graph


TWO-Pass Dijkstra : Simulations

- NSFNET topology (32 nodes)
- Uniformly distributed cost&delay factors on the graph

TWO-Pass Dijkstra : Simulations

- NSFNET topology (32 nodes)
- Uniformly generated cost&delay on the graph

UMBC

Conclusions

- A novel hybrid network scheme that applies GMPLS on optical Ethernet is demonstrated
 - An integrated reconfigurable Ethernet (Layer 2) + Optical layer
 - QoS traffic engineering
 - » Efficient bandwidth utilization
 - » Cost-effective
- The testbed is utilized to develop network control and management schemes
 - Study advanced control plan issues
- Understand the issues related to actively managed network
 - When, where and how to trigger network reconfiguration
- In our system, each data packet connection can be *treated* as an independent circuit connection

- The system can be used to study networks with much larger dimension