

Time-Step Network Simulation

Andrzej Kochut Udaya Shankar

University of Maryland, College Park

Introduction

- • Goal: Fast accurate performance evaluation tool for computer networks
	- Handles general control schemes (time- and state-dependent)
- • Packet-level simulation:
	- Handles general control scheme precisely but prohibitively expensive
- • Steady-state exact queuing models
	- Handles only simple models; no transient metrics
- • Time-dependent exact queuing model
	- Only very simple systems; no state-dependent control
- \bullet Time-dependent stochastic model (fluid and diffusion approximations)
	- Handles time-dependent, but not state-dependent control
- \bullet Approach: Combine discrete-event simulation with diffusion approximation – Accurate, inexpensive, handles time- and state-dependent control

Hybrid time-step simulation

- •Consider a single communication link
- •Want to generate sample paths efficiently

Hybrid time-step simulation

- •Divide time axis into small intervals Δ
- \bullet For interval $[t_0, t_0 + \Delta]$ choose $N(t_0 + \Delta)$ randomly based on *N(t 0)* and arrival and service processes

 \bullet Repeat for successive time intervals

Hybrid time-step simulation

- •Time/state dependent sources undergo state changes at every Δ (∆≈ time scale of upper-layer control, e.g., RTT for TCP)
- •Discrete events are not packet transmissions but time steps
- \bullet Captures state-dependent control because sample-path is explicit
- • Diffusion approximation [Kolomogorov] to obtain Prob[*N(t+ ∆)* | *N(t)*]
	- Arrival and service processes defined by time-varying mean and variance

Extension to network of queues

- \bullet For each interval $[t, t + \Delta]$
	- – Approximate queue departure and internal flows by renewal processes characterized by the first two moments
	- Routing probabilities determined by queue occupancy
- \bullet Formulate equations for merging and splitting flows

Example: Queue size prob density

•GI/D/1/40 queue, $\lambda = 800$, $c_A = 1$, and $\mu = 810$, $N(t) = 2$, $\Delta = 0.05$

Example: TSS vs. packet-level simulation

Example: Network with state-dependent traffic sources

- \bullet Traffic flows $1\rightarrow 5$ and $2\rightarrow 6$ sharing link $3\rightarrow 4$.
- • Each traffic source:
	- –Starts at 1350 pkts/sec
	- $-$ 900 pkts/sec when RTT ≥ 1.0 sec
	- $-$ 1350 pkts/sec when RTT ≤ 0.5 sec
	- –Squared coefficient of variation 1.0
- \bullet Service:
	- forward rates as shown above
	- backward rates are all 20000 pkts/sec
	- Squared coefficient of variation of service of all links is 0.0

Example: Network with state-dependent TSS Example. Network with sta

Mean queue size of link 3 \rightarrow

- \bullet Congestion window *cwnd(t)* for time interval *[t, t* + Δ *]* based on *RTT* and history
- \bullet Send rate of source in interval $[t, t + \Delta J]$ is:

sndRate(t) = cwnd(t) / rtt

 \bullet Loss count in interval $[t, t + \Delta J]$ based on probability p of being at the upper boundary:

*lossCount(t) = arrRate(t) * ∆ * p*

•Losses assigned to flows based on the ratio of arrival rates

Example: TCP and UDP sharing a link

TSS

Software architecture

Time-step simulation - Conclusions

- •Time-stepped simulation using diffusion approximation
- •Fast and accurate alternative to packet-level (discrete-event) simulation
- \bullet Computational complexity not affected by increasing link bandwidth
- \bullet Handles state-dependent control schemes
- \bullet Yields time-dependent evolution of performance metrics
- • Ongoing work
	- Extend queue model to handle wireless links (802.11)
	- –Extend to other router disciplines (RED, AQM, CBQ)
	- –Optimize numerical computation
	- Detailed comparisons against packet-level simulation for large networks