

Time-Step Network Simulation

Andrzej Kochut Udaya Shankar

University of Maryland, College Park

Introduction

- Goal: Fast accurate performance evaluation tool for computer networks
 - Handles general control schemes (time- and state-dependent)
- Packet-level simulation:
 - Handles general control scheme precisely but prohibitively expensive
- Steady-state exact queuing models
 - Handles only simple models; no transient metrics
- Time-dependent exact queuing model
 - Only very simple systems; no state-dependent control
- Time-dependent stochastic model (fluid and diffusion approximations)
 - Handles time-dependent, but not state-dependent control
- Approach: Combine discrete-event simulation with diffusion approximation
 Accurate, inexpensive, handles time- and state-dependent control

Hybrid time-step simulation

- Consider a single communication link
- Want to generate sample paths efficiently

Hybrid time-step simulation

- Divide time axis into small intervals Δ
- For interval $[t_0, t_0 + \Delta]$ choose $N(t_0 + \Delta)$ randomly based on $N(t_0)$ and arrival and service processes

• Repeat for successive time intervals

Hybrid time-step simulation

- Time/state dependent sources undergo state changes at every Δ (Δ≈ time scale of upper-layer control, e.g., RTT for TCP)
- Discrete events are not packet transmissions but time steps
- Captures state-dependent control because sample-path is explicit
- Diffusion approximation [Kolomogorov] to obtain Prob[$N(t+\Delta) | N(t)$]
 - Arrival and service processes defined by time-varying mean and variance

Extension to network of queues

- For each interval [$t, t + \Delta$]
 - Approximate queue departure and internal flows by renewal processes characterized by the first two moments
 - Routing probabilities determined by queue occupancy
- Formulate equations for merging and splitting flows

Example: Queue size prob density

• GI/D/1/40 queue, $\lambda = 800$, $c_A = 1$, and $\mu = 810$, N(t) = 2, $\Delta = 0.05$

Example: TSS vs. packet-level simulation

Example: Network with state-dependent traffic sources

- Traffic flows $1 \rightarrow 5$ and $2 \rightarrow 6$ sharing link $3 \rightarrow 4$.
- Each traffic source:
 - Starts at 1350 pkts/sec
 - 900 pkts/sec when RTT > 1.0 sec
 - 1350 pkts/sec when RTT < 0.5 sec
 - Squared coefficient of variation 1.0
- Service:
 - forward rates as shown above
 - backward rates are all 20000 pkts/sec
 - Squared coefficient of variation of service of all links is 0.0

Example: Network with state-dependent traffic sources

Mean queue size of link $3 \rightarrow 4$

- Congestion window cwnd(t) for time interval $[t, t + \Delta]$ based on *RTT* and history
- Send rate of source in interval [t, $t + \Delta$] is:

sndRate(t) = cwnd(t) / rtt

• Loss count in interval [t, $t + \Delta$] based on probability p of being at the upper boundary:

 $lossCount(t) = arrRate(t) * \Delta * p$

• Losses assigned to flows based on the ratio of arrival rates

Example: TCP and UDP sharing a link

TSS

Software architecture

Time-step simulation - Conclusions

- Time-stepped simulation using diffusion approximation
- Fast and accurate alternative to packet-level (discrete-event) simulation
- Computational complexity not affected by increasing link bandwidth
- Handles state-dependent control schemes
- Yields time-dependent evolution of performance metrics
- Ongoing work
 - Extend queue model to handle wireless links (802.11)
 - Extend to other router disciplines (RED, AQM, CBQ)
 - Optimize numerical computation
 - Detailed comparisons against packet-level simulation for large networks