Measurement Based Routing Strategies on Overlay Architectures

Student: Tuna Güven

Faculty: Bobby Bhattacharjee, Richard J. La, and

Mark A. Shayman

LTS Review February 15th, 2005

Outline

Measurement-Based Multi-path Unincast Routing

- Motivation and Problem Statement
- Existing Approaches
- Proposed Multi-path Routing Algorithm
 - Simultaneous Perturbation Stochastic Approximation (SPSA)
- Simulation Results
- Measurement-Based Multi-path Multicast Routing
 - Motivation
 - Existing Approaches
 - Creation of multiple multicast paths
 - Digital Fountain Coding
 - Problem Formulation
 - Network Models
 - Proposed Multi-path Multicast Routing Algorithm
 - Simulation Results

- Current Routing Algorithms
 - Single route for a source-destination pair
 - Unbalanced resource utilization
 - Create unnecessary bottlenecks and degrade network performance
 - Some parts of network underutilized
- Application-Layer Overlay Network
 - Overlay nodes network devices located inside the network
 - ▶ Higher processing power and lower bandwidth
 - ▶ Used to create alternative paths
 - Source attaches an additional IP header with the address of an overlay node as the destination address
 - · Overlay node strips the extra IP header and forwards the packet to the destination
 - Provides multiple routes for each source-destination pair
 - No need to modify the underlying routing protocols!

Problem Statement

• Optimal Multi-path Routing:

$$\min_{x} C(x) = \min_{x} \sum_{l} C_{l}(x^{l})$$

s. t. $\sum_{p \in P_{s}} x_{sp} = r_{s}, \forall s \in S,$
 $x_{sp} \ge \varepsilon, \forall p \in P_{s}, s \in S,$

- $S = \{1, 2, \dots, S\}$ is the set of SD pairs
- $P_s \subseteq 2^L$ is the set of paths available to pair *s*
- x_{sp} is the amount of traffic routed on path $p \in P_s$
- $x = \{x_{sp}, p \in P_s, s \in S\}$
- $x^l = \sum_{s \in S} \sum_{l \in p: p \in P_s} x_{sp}$
- ε is an arbitrarily small positive constant
- $C_l(\cdot)$ is a convex and differentiable function
- **Goal:** Minimize C(x) by distributing the load along alternative paths
 - Distributed algorithm
 - Noisy measurements

 $C_{s1}(X) + \mu_1$

Existing Algorithms

Gradient projection algorithm:

$$x_s(k+1) = \Pi_{\Theta} \left[x_s(k) - a \nabla C_s(k) \right],$$

- $x_s = (x_{sp}, p \in P_s), a > 0$ is the step size,
- $\nabla C_s(k) = (\partial C(x(k))/\partial x_{sp}, p \in P_s),$
- J. N.Tsitsiklis, D.P. Bertsekas, "Distributed Asynchronous Optimal Routing in Data Networks," IEEE Trans. Automat. Control, 1986
- Key facts ignored in the existing solutions:
 - Cost measurements are noisy
 - Analytical cost function is not available (e.g., Network of G/G/1 queues)
- A. Elwalid, C. Jin, S. Low and I. Widjaja, "MATE: MPLS adaptive traffic engineering," IEEE Infocom, 2001
 - Gradient estimated using cost measurements in proposed algorithm
 - Analysis assumes known gradient

Approach - Stochastic Approximation (SA)

- ► A recursive procedure for finding roots of equation(s) using noisy measurements
- Replace $\nabla C_s(k)$ with its approximation $\hat{g}_s(k)$:

 $x_s(k+1) = \Pi_{\Theta}[x_s(k) - a_s(k)\hat{g}_s(k)].$

- Alternative SA methods based on different gradient estimation approaches:
 - Finite Differences Stochastic Approximation (FDSA)
 - Simultaneous Perturbation Stochastic Approximation (SPSA)
- ► *FDSA*: Each element of a *p* dimentional input vector is perturbed *one at a time* and corresponding measurements are obtained

$$\hat{g}_i(k) = \frac{y(x(k) + c(k)e_i) - y(x(k) - c(k)e_i)}{2c(k)},$$

- $y(\cdot)$ is the observed noisy cost measurement
- $0 < c(k) < \infty, c(k) \rightarrow 0$ as $k \rightarrow \infty$
- e_i denotes a unit vector with one in the *i*-th position and zeros elsewhere
- Requires 2p measurements to get an estimate of the gradient
- **Remark:** Implementation presented in MATE relies on the FDSA idea

Simultaneous Perturbation Stochastic Approximation (SPSA)

Elements of the input vector are *randomly perturbed altogether* to obtain *two measurements*

$$\hat{g}_i(k) = \frac{y(x(k) + c(k)\Delta(k)) - y(x(k) - c(k)\Delta(k))}{2c(k)\Delta_i(k)}$$

- $\Delta(k)$ is the vector of the random perturbations
 - Elements mutually independent with zero mean and uniformly bounded
 - Projected to a feasible space in our problem
- Gradient estimate calculated using these two estimates

SA Overview: SPSA vs. FDSA

- ► Benefits of SPSA over FDSA:
 - It is shown that under reasonably general conditions, SPSA and FDSA achieve same level of statistical accuracy for a given number of iterations although SPSA uses p times fewer measurements than FDSA
 - J. Spall, "Multivariate stochastic approx. using simultaneous perturbation gradient approximation," IEEE Trans. Automat. Contr., 1992
- Promising potential for routing problem:
 - Fact: Measurements are costly and time-consuming
 - SPSA gives faster response to time-varying network conditions
 - With certain modifications, SPSA algorithm fits well to our routing problem

SPSA - Based Multi-path Routing

- Proposed Multi-path Routing Algorithm:
 - Each SD pair runs a copy of SPSA algorithm *independently* of each other

$$\begin{aligned} x_{s}(k+1) &= & \Pi_{\Theta}[x_{s}(k) - a_{s}(k)\hat{g}_{s}(k)] \\ \hat{g}_{s,i}(k) &= & \frac{|P_{s}|}{|P_{s}| - 1} \frac{y_{s}(\Pi_{\Theta}[x(k) + c(k)\Delta(k)]) - y_{s}(x(k))}{c_{s}(k)\Delta_{s,i}(k)} \end{aligned}$$

- Rate vector x(k) converges to the **global optimum**.
- ► Advantages of the proposed algorithm:
 - Distributed and depends only on local state information
 - No analytical cost gradient function required
 - Measurements can be noisy
 - Significantly reduces measurement time and achieves faster convergence

Simulation Setup

TABLE IThe Cross traffic dynamics

Link	Load Distribution in time (sec)		
	[0 - 1000)	[1000 - 2500)	[2500 - 3600)
L1	0.77	0.44	0.44
L2	0.33	0.33	0.67
L3	0.33	0.33	0.33

Network Topology

- ► Three SD pairs, each with two alternative paths
- ► Links capacity 45 Mbps
- ► Source rates: 19.8 Mbps (= 0.44 of link capacities)
- ► Initial routes:
 - $(S1 \rightarrow L2 \rightarrow D1), (S2 \rightarrow L3 \rightarrow D2), (S3 \rightarrow L3 \rightarrow D3).$
- ► Lack of synchronization: offset

Simulation Results - (1)

Convergence Time: Approximately 500 secs for MATE and 200 secs for the proposed algorithm

Simulation Results - (1) Cont'd

Effect of Increasing Interference

► Measurement-Based Optimal Multi-path Routing.

Measurement-Based Multi-path Multicast Routing:

- Motivation
- Existing Approaches
- Creation of multiple multicast paths
 - Digital Fountain Coding
- Problem Formulation
- Network Models
- Proposed Multi-path Multicast Routing Algorithm
- Simulation Results

- Intra-domain multi-path multicast routing:
 - Demanding multicast applications with increasing bandwidth requirements
 - Load balancing over multiple paths for efficient network utilization
 - Highly connected ISP backbone topologies
 - ▶ N. Spring, et.al., "Measuring ISP topologies with Rocketfuel," Sigcomm 2002
 - Availability of multiple paths
 - Extending ideas from multi-path unicast routing
 - Goal: load distribution using an application-layer overlay network
- Solution applicable for different network models

Existing Approaches

- ► Multi-tree Routing:
 - K. Park and Y. Shin, "Uncapacitated point-to-multipoint network flow problem," European Journal of Research, 2003
 - Limited to *single* multicast source case
 - Noise free measurements; analytic cost gradients are available
 - Cost function is *strictly convex*, continuous and *differentiable*
- ► Network Coding:
 - Y. Zhu, B. Li, J. Guo, "Multicast with Network Coding in Application-Layer overlay networks," IEEE JSAC vol 22, 2004
 - ▶ Limited to *single* multicast source case
 - Centralized approach
 - * Linear codes are assigned to each link by the source node
 - * Frequent updates are necessary every time a flow arrives/departs
 - A single packet loss is costlier than usual
 - Receiver requires the lost packet to decode a large block of data

Creating Multiple Multicast Paths

- Application Layer Overlays:
 - Limited number of simple devices located inside the network (e.g., PCs with network processors)
 - Alternative paths are created between a source and a destination
 - Min-hop path from source to overlay and from overlay to destination (IP over IP)
 - Simplifying assumption: Consider only a single overlay node along each path
 - Not necessarily creates multi-trees

Bookkeeping Problem

- ▶ Problem with multiple paths in multicast:
 - How to map individual packets to paths for each destination to minimize number of packets sent?
 - Complex bookkeeping problem
- ► Can solve the problem ...
 - if it is possible to send *distinct* packets along each path
- Pre-coding using a erasure correcting code can solve the problem
- ► However, for efficient implementation the code rate (R = K/N) is required to be known before transmission
- Solution: *Digital Fountain Coding*

$$S \to d_{1} = 2 \qquad S \to d_{2} = 0$$

$$S \to O_{1} \to d_{1} = 2 \qquad S \to O_{1} \to d_{2} = 2$$

$$S \to O_{2} \to d_{1} = 2 \qquad S \to O_{2} \to d_{2} = 4$$

Digital Fountain Coding

- ► A special form of block coding with the following properties:
 - Rateless coding:
 - Number of distinct encoded symbols generated is practically limitless
 - ▶ Number of encoded symbols to be generated can be determined on the fly.
 - Output symbols are generated by the XOR addition of *randomly* selected input symbols
 - Number of input symbols to be added is *random* as well
 - Decoder recovers the *K* input symbols from any *M* output symbols with a *high probability*
 - e.g. *Raptor Codes*: for K = 64536 and M = 68026, error probability is $1.71x10^{-14}$
 - Raptor Codes have asymptotically *linear* encoding and decoding times
 - Successful commercial implementation with encoding rates at several gigabits/sec by Digital Fountain Company
- Useful for multi-path multicast routing
 - Generate distinct packets book-keeping unnecessary
 - Routing algorithms merely need to calculate the path rates

Problem Statement

Optimal Multi-path Multicast Routing:

$$\min_{x} C(x) = \min_{x} \sum_{l} C_{l}(x^{l})$$

s.t. $\sum_{o \in O^{s}} x_{o,d}^{s} = r^{s} + \varepsilon^{s}, \forall s \in S, d \in D^{s}$
 $x_{o,d}^{s} \ge v, \forall d \in D^{s}, o \in O^{s}, s \in S$

- $S = \{1, 2, \dots, S\}$ set of multicast sources
- *D^s* set of destination nodes of the session *s*
- O^s set of overlay nodes used to create paths between s and its destinations D^s
- $x_{o,d}^s$ rate at which source s sends packets to destination d through overlay node o
- ε^{s} required redundancy due to Digital Fountain Coding
- ν an arbitrarily small positive constant
- Value of x^l depends on the adopted Network Model

r = 0.7

 $x_{o_2}^s = 0.7$

r = 1.1

r = 0.7

 $x_{o_{1},d_{2}}^{s} = 0.3$

 $x_{02,d_2}^{s} = 0.7$

Network Model- I

r = 0.6

 L_1

r = 0.3

L,

r = 0.4

 $x_{01}^{s} = 0.6$

r = 0.9

r = 0.6

 $x_{o_{1,d_{1}}}^{s} = 0.6$

 $x_{o_2,d_1}^s = 0.4$

► Represents traditional IP networks without any multicasting capability

$$x^{l} = \sum_{s \in S} \left(\sum_{o \in O^{s}: l \in V_{o}^{s}} x_{o}^{s} + \sum_{o \in O^{s}} \left(\sum_{d \in D^{s}: l \in V_{d}^{o}} x_{o,d}^{s} \right) \right)$$

- *x*^s_o = max_{d∈D^s} {*x*^s_{o,d}} is the total rate at which overlay node *o* receives packets from source *s*
- $V_{n_2}^{n_1}$ is the set of links in the default path from node n_1 to node n_2

Network Model-II

► Represents a network model with IP Multicast capability (e.g., DVMRP)

$$x^{l} = \sum_{s \in S} \left(\sum_{o \in O^{s} : l \in V_{o}^{s}} x_{o}^{s} + \sum_{o \in O^{s} : l \in T_{o}^{s}} x_{o}^{s} \right)$$

- x^s_o = max_{d∈D^s} {x^s_{o,d}} is the total rate at which overlay node *o* receives packets from source *s*
- $V_{n_2}^{n_1}$ is the set of links in the default path from node n_1 to node n_2 , established by the underlying routing protocol (e.g., OSPF)
- T_o^s is set of links in the multicast tree rooted at overlay node *o* and serving nodes in D^s
- Observation:

$$egin{array}{rcl} x^{s\star}_{o,d} &=& x^{s\star}_{o,d'} &orall d, d'\in D^s \ x^{s\star}_o &=& x^{s\star}_{o,d} &orall d\in D^s, \, o\in O^s, \, s\in S. \end{array}$$

▶ Hence, the rate allocation problem can be reduced to find $x := (x_o^s, s \in S, o \in O^s)$.

Network Model-III

- ▶ Represents a network model with *smart routers* in addition to IP multicast
 - Capable of forwarding packets onto each branch at a different rate

$$x^{l} = \sum_{s \in S} \left(\sum_{o \in O^{s}: l \in V_{o}^{s}} x_{o}^{s} + \sum_{o \in O^{s}} \max_{d \in D^{s}: l \in \hat{V}_{d}^{o}} x_{o,d}^{s} \right)$$

- *V*ⁿ₁ ⊂ *L* is the set of links in the default path from node *n*₁ to node *n*₂
- \hat{V}_d^o denotes the set of links along the path from overlay node *o* to destination *d* in the multicast tree
 - May be different from the path provided by the underlying routing protocol

SPSA - Based Multi-path Multicast Routing

Each multicast source runs SPSA *independently* to minimize the cost along its paths.

$$\begin{aligned} x_{s}(k+1) &= & \Pi_{\Theta_{s}}[x_{s}(k) - a_{s}(k)\hat{g}_{s}(k)] \\ \hat{g}_{s,i}(k) &= & \frac{|O^{s}|}{|O^{s}| - 1} \frac{y_{s}(\Pi_{\Theta}[x(k) + c(k)\Delta(k)]) - y_{s}(x(k))}{c_{s}(k)\Delta_{s,i}(k)} \end{aligned}$$

- ► Main differences from the unicast case:
 - Cost function no longer differentiable
 - ► Convex Analysis (i.e., subgradients) instead of Taylor Series expansion
- ► The overall system converges to the *global optimum*
- Merits of the optimal routing algorithm:
 - Distributed, and depends only on local state information
 - Does not rely on analytical cost gradient function
 - Measurements can be noisy
- ► Same algorithm can be run under all network models
 - Benefits of additional multicasting functionality can be analyzed

Simulation Results - (1)

- ISP topology analysis 1
 - MCI backbone topology

- Link bandwidth: 20 Mbps
- Nodes 1 and 5 are multicast sources
- Each source creates 11.5 Mbps Poisson traffic
- Nodes 9 and 17 are overlay nodes
- Link cost : $(x^l/c^l)^2$, where x^l is the link rate and c^l is the link capacity
- Performance of the proposed algorithm under different network models
- Comparison with DVMRP

Simulation Results - (1) Cont'd

$\blacktriangleright \text{ Number of receivers} = 6$

Simulation Results - (2)

- ► ISP topology analysis 2
 - Sprint backbone topology

- Higher node connectivity compared to MCI topology (3.167 vs 5.077)
- Link bandwidth: 20 Mbps
- Nodes 1, 9 and 22 are multicast sources
- Each source creates 10 Mbps Poisson traffic
- Nodes 10 and 23 are overlay nodes
- Each source has 18 receivers
- Performance of the proposed algorithm under different network models
- Comparison with DVMRP

Simulation Results - (2) Cont'd

 $\blacktriangleright \text{ Number of receivers} = 18$

Future Work: Overlay Topology Control

- ► We have assumed the paths between source destination pairs are given
 - Number, location, and connectivity of overlay nodes was assumed to be given and fixed
- ► Significant effects on the overall performance of the routing algorithms
- ► Each overlay node comes with additional cost:
 - Want to maximize network performance with minimum number of overlay nodes
- ► Simple simulation study reflecting the effect of overlay selection on performance:
 - Experiment done under Network Model-I under Sprint backbone topology

Overlay Topology Control

25

Overlay Topology Control

- Connectivity of overlay nodes may have significant effects as well
 - Relax the assumption of having only one overlay node along each path
- ► Goal:
 - Establish an overlay topology control architecture in conjunction with the existing multipath routing algorithms
 - Optimization methods such as Simulated Annealing or Genetic Algorithms may be used for this combinatorial problem
 - Alternative: Optimal paths can be discovered first by ignoring the overlay architecture and then they can be approximated by limited number of overlays