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Motivation

I Current Routing Algorithms

• Single route for a source-destination pair

• Unbalanced resource utilization

I Create unnecessary bottlenecks and degrade network performance

I Some parts of network underutilized

I Application-Layer Overlay Network

• Overlay nodes - network devices located inside the network

I Higher processing power and lower bandwidth

I Used to create alternative paths

· Source attaches an additional IP header with the address of an overlay node as the

destination address

· Overlay node strips the extra IP header and forwards the packet to the destination

I Provides multiple routes for each source-destination pair

I No need to modify the underlying routing protocols!



Problem Statement

I Optimal Multi-path Routing:

min
x

C(x) = min
x ∑

l

Cl(xl)

s. t. ∑
p∈Ps

xsp = rs,∀ s ∈ S,

xsp ≥ ε, ∀ p ∈ Ps, s ∈ S,

• S = {1,2, · · · , S} is the set of SD pairs

• Ps ⊆ 2L is the set of paths available to pair s

• xsp is the amount of traffic routed on path p∈ Ps

• x = {xsp, p ∈ Ps,s ∈ S}
• xl = ∑s∈S ∑ l∈p : p∈Ps xsp

• ε is an arbitrarily small positive constant

• Cl(·) is a convex and differentiable function
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I Goal: Minimize C(x) by distributing the load along alternative paths

• Distributed algorithm

• Noisy measurements
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Existing Algorithms

I Gradient projection algorithm:

xs(k + 1) = ΠΘ
[
xs(k)−a∇Cs(k)

]
,

• xs = (xsp, p ∈ Ps), a> 0 is the step size,

• ∇Cs(k) = (∂C(x(k))/∂xsp, p ∈ Ps),

I J. N.Tsitsiklis, D.P. Bertsekas, “Distributed Asynchronous Optimal Routing in Data

Networks,” IEEE Trans. Automat. Control, 1986

I Key facts ignored in the existing solutions:

• Cost measurements are noisy

• Analytical cost function is not available (e.g., Network of G/G/1 queues)

I A. Elwalid, C. Jin, S. Low and I. Widjaja, “MATE: MPLS adaptive traffic engineering,”

IEEE Infocom, 2001

• Gradient estimated using cost measurements in proposed algorithm

• Analysis assumes known gradient
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Approach - Stochastic Approximation (SA)

I A recursive procedure for finding roots of equation(s) using noisy measurements

I Replace ∇Cs(k) with its approximation ĝs(k):

xs(k + 1) = ΠΘ[xs(k)−as(k)ĝs(k)].

I Alternative SA methods based on different gradient estimation approaches:

• Finite Differences Stochastic Approximation (FDSA)

• Simultaneous Perturbation Stochastic Approximation (SPSA)

I FDSA: Each element of a p dimentional input vector is perturbed one at a time and

corresponding measurements are obtained

ĝi(k) =
y(x(k)+ c(k)ei)− y(x(k)− c(k)ei)

2c(k)
,

• y(·) is the observed noisy cost measurement

• 0< c(k)< ∞, c(k)→ 0 as k→ ∞

• ei denotes a unit vector with one in the i-th position and zeros elsewhere

I Requires 2p measurements to get an estimate of the gradient

I Remark: Implementation presented in MATE relies on the FDSA idea
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Simultaneous Perturbation Stochastic Approximation (SPSA)

I Elements of the input vector are randomly perturbed altogether to obtain two measurements

ĝi(k) =
y(x(k)+ c(k)∆(k))− y(x(k)− c(k)∆(k))

2c(k)∆i(k)

• ∆(k) is the vector of the random perturbations

I Elements mutually independent with zero mean and uniformly bounded

I Projected to a feasible space in our problem

• Gradient estimate calculated using these two estimates
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SA Overview: SPSA vs. FDSA

I Benefits of SPSA over FDSA:

• It is shown that under reasonably general conditions, SPSA and FDSA achieve same level
of statistical accuracy for a given number of iterations although SPSA uses p times
fewer measurements than FDSA

• J. Spall, “Multivariate stochastic approx. using simultaneous perturbation gradient

approximation,” IEEE Trans. Automat. Contr., 1992

I Promising potential for routing problem:

• Fact: Measurements are costly and time-consuming

• SPSA gives faster response to time-varying network conditions

• With certain modifications, SPSA algorithm fits well to our routing problem
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SPSA - Based Multi-path Routing

I Proposed Multi-path Routing Algorithm:

• Each SD pair runs a copy of SPSA algorithm independently of each other

xs(k + 1) = ΠΘ[xs(k)−as(k)ĝs(k)]

ĝs,i(k) =
|Ps|
|Ps|−1

ys(ΠΘ[x(k)+ c(k)∆(k)])− ys(x(k))

cs(k)∆s,i(k)

I Rate vector x(k) converges to the global optimum.

I Advantages of the proposed algorithm:

• Distributed and depends only on local state information

• No analytical cost gradient function required

• Measurements can be noisy

• Significantly reduces measurement time and achieves faster convergence
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Simulation Setup
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Network Topology

I Three SD pairs, each with two alternative paths

I Links capacity - 45 Mbps

I Source rates: 19.8 Mbps (= 0.44 of link capacities)

I Initial routes:

• (S1→L2→D1), (S2→L3→D2), (S3→L3→D3).

I Lack of synchronization: offset
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Simulation Results - (1)
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I Convergence Time: Approximately 500 secs for MATE and 200 secs for the proposed

algorithm
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Simulation Results - (1) Cont’d

I Effect of Increasing Interference
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Motivation

I Intra-domain multi-path multicast routing:

• Demanding multicast applications with increasing bandwidth requirements

• Load balancing over multiple paths for efficient network utilization

• Highly connected ISP backbone topologies

I N. Spring, et.al., “Measuring ISP topologies with Rocketfuel,” Sigcomm 2002

I Availability of multiple paths

• Extending ideas from multi-path unicast routing

• Goal: load distribution using an application-layer overlay network

I Solution applicable for different network models
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Existing Approaches

I Multi-tree Routing:

• K. Park and Y. Shin, “Uncapacitated point-to-multipoint network flow problem,”

European Journal of Research, 2003

• Limited to single multicast source case

• Noise free measurements; analytic cost gradients are available

• Cost function is strictly convex, continuous and differentiable

I Network Coding:

• Y. Zhu, B. Li, J. Guo, “Multicast with Network Coding in Application-Layer overlay

networks,” IEEE JSAC vol 22, 2004

I Limited to single multicast source case

I Centralized approach

* Linear codes are assigned to each link by the source node

* Frequent updates are necessary every time a flow arrives/departs

• A single packet loss is costlier than usual

I Receiver requires the lost packet to decode a large block of data
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Creating Multiple Multicast Paths

I Application Layer Overlays:

• Limited number of simple devices located inside the network

(e.g., PCs with network processors)

• Alternative paths are created between a source and a destination

I Min-hop path from source to overlay and from overlay to

destination (IP over IP)

I Simplifying assumption: Consider only a single overlay node

along each path

• Not necessarily creates multi-trees

S

d 1 d 2

O2O1
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Bookkeeping Problem

I Problem with multiple paths in multicast:

• How to map individual packets to paths for each destination to

minimize number of packets sent?

• Complex bookkeeping problem

I Can solve the problem ...

• if it is possible to send distinct packets along each path

I Pre-coding using a erasure correcting code can solve the problem

I However, for efficient implementation the code rate (R = K/N) is

required to be known before transmission

I Solution: Digital Fountain Coding
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Digital Fountain Coding

I A special form of block coding with the following properties:

• Rateless coding:

I Number of distinct encoded symbols generated is practically limitless

I Number of encoded symbols to be generated can be determined on the fly.

• Output symbols are generated by the XOR addition of randomly selected input symbols

• Number of input symbols to be added is random as well

• Decoder recovers the K input symbols from any M output symbols with a high
probability

I e.g. Raptor Codes: for K = 64536 and M = 68026, error probability is 1.71x10−14

• Raptor Codes have asymptotically linear encoding and decoding times

• Successful commercial implementation with encoding rates at several gigabits/sec by

Digital Fountain Company

I Useful for multi-path multicast routing

• Generate distinct packets - book-keeping unnecessary

• Routing algorithms merely need to calculate the path rates
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Problem Statement

I Optimal Multi-path Multicast Routing:

minx C(x) = minx ∑l Cl(xl)

s.t. ∑o∈Os xs
o,d = rs + εs,∀s ∈ S,d ∈ Ds

xs
o,d ≥ ν, ∀d ∈ Ds,o ∈ Os,s ∈ S

• S = {1,2, · · · , S} - set of multicast sources

• Ds - set of destination nodes of the session s

• Os - set of overlay nodes used to create paths between s and its destinations Ds

• xs
o,d - rate at which source s sends packets to destination d through overlay node o

• εs - required redundancy due to Digital Fountain Coding

• ν - an arbitrarily small positive constant

• Value of xl depends on the adopted Network Model
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Network Model- I

I Represents traditional IP networks without any multicasting capability

xl = ∑
s∈S


 ∑

o∈Os:l∈V s
o

xs
o + ∑

o∈Os

(
∑

d∈Ds:l∈V o
d

xs
o,d

)



• xs
o = maxd∈Ds{xs

o,d} is the total rate at which over-

lay node o receives packets from source s

• V n1
n2 is the set of links in the default path from node

n1 to node n2
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I Remark: As opposed to the unicast case, Cl(xl) is not differentiable with respect to input

variables xs
o,d
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Network Model-II

I Represents a network model with IP Multicast capability (e.g., DVMRP)

xl = ∑
s∈S

(
∑

o∈Os:l∈V s
o

xs
o + ∑

o∈Os:l∈T s
o

xs
o

)

• xs
o = maxd∈Ds{xs

o,d} is the total rate at which over-

lay node o receives packets from source s

• V n1
n2 is the set of links in the default path from node

n1 to node n2, established by the underlying rout-

ing protocol (e.g., OSPF)

• T s
o is set of links in the multicast tree rooted at

overlay node o and serving nodes in Ds

• Observation:

xs?
o,d = xs?

o,d′ ∀d, d′ ∈ Ds

xs?
o = xs?

o,d ∀d ∈ Ds, o ∈ Os, s ∈ S.
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I Hence, the rate allocation problem can be reduced to find x := (xs
o,s ∈ S,o ∈ Os).
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Network Model-III

I Represents a network model with smart routers in addition to IP multicast

• Capable of forwarding packets onto each branch at a different rate

xl = ∑
s∈S

(
∑

o∈Os:l∈V s
o

xs
o + ∑

o∈Os
max

d∈Ds:l∈V̂ o
d

xs
o,d

)

• V n1
n2 ⊂ L is the set of links in the default path from

node n1 to node n2

• V̂ o
d denotes the set of links along the path from

overlay node o to destination d in the multicast

tree

I May be different from the path provided by the

underlying routing protocol
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SPSA - Based Multi-path Multicast Routing

I Each multicast source runs SPSA independently to minimize the cost along its paths.

xs(k + 1) = ΠΘs [xs(k)−as(k)ĝs(k)]

ĝs,i(k) =
|Os|
|Os|−1

ys(ΠΘ[x(k)+ c(k)∆(k)])− ys(x(k))

cs(k)∆s,i(k)

I Main differences from the unicast case:

• Cost function no longer differentiable

I Convex Analysis (i.e., subgradients) instead of Taylor Series expansion

I The overall system converges to the global optimum

I Merits of the optimal routing algorithm:

• Distributed, and depends only on local state information

• Does not rely on analytical cost gradient function

• Measurements can be noisy

I Same algorithm can be run under all network models

• Benefits of additional multicasting functionality can be analyzed
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Simulation Results - (1)

I ISP topology analysis - 1

• MCI backbone topology
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• Link bandwidth: 20 Mbps

• Nodes 1 and 5 are multicast sources

• Each source creates 11.5 Mbps Poisson traffic

• Nodes 9 and 17 are overlay nodes

• Link cost : (xl/cl)
2
, where xl is the link rate and cl is the link capacity

I Performance of the proposed algorithm under different network models

I Comparison with DVMRP
20



Simulation Results - (1) Cont’d

I Number of receivers = 6
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Simulation Results - (2)

I ISP topology analysis - 2

• Sprint backbone topology
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• Higher node connectivity compared to MCI topology (3.167 vs 5.077)

• Link bandwidth: 20 Mbps

• Nodes 1, 9 and 22 are multicast sources

• Each source creates 10 Mbps Poisson traffic

• Nodes 10 and 23 are overlay nodes

• Each source has 18 receivers

I Performance of the proposed algorithm under different network models

I Comparison with DVMRP
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Simulation Results - (2) Cont’d

I Number of receivers = 18
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Future Work: Overlay Topology Control

I We have assumed the paths between source destination pairs are given

• Number, location, and connectivity of overlay nodes was assumed to be given and fixed

I Significant effects on the overall performance of the routing algorithms

I Each overlay node comes with additional cost:

• Want to maximize network performance with minimum number of overlay nodes

I Simple simulation study reflecting the effect of overlay selection on performance:

• Experiment done under Network Model-I under Sprint backbone topology
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Overlay Topology Control
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Overlay Topology Control

I Connectivity of overlay nodes may have significant effects as well

• Relax the assumption of having only one overlay node along each path

I Goal:

• Establish an overlay topology control architecture in conjunction with the existing

multipath routing algorithms

• Optimization methods such as Simulated Annealing or Genetic Algorithms may be used

for this combinatorial problem

• Alternative: Optimal paths can be discovered first by ignoring the overlay architecture

and then they can be approximated by limited number of overlays
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