Source-domain DDoS Prevention

Bobby BhattacharjeeDave LevinChristopher KommareddyRichard LaMark ShaymanVahid TabatabaeeUniversity of Maryland

DDoS Prevention at the Source

- Monitor and stop attacks at the *source* of the attack
- Does not require Internet-wide deployment
- Most efficient solution attacks are stopped before they can do much damage
- Shares the cost of attack monitoring and prevention

Approaches

• Firewall at the domain egress(es)

Approaches

Approaches

• Overlay-based

Solution components — new ideas

• Coordinate and Correlate information between nodes

• Local Oracle

Source-domain Monitoring

• Monitors are co-located with routers

• Packets are sampled at the router and sent to monitor

Detection Algorithm Schematic

• Sampled packets are binned and counted

• Binning and counting at line speeds (modulo sampling)

• Simple ratio-based test signals bin overflow

• Counters are periodically zeroed to "reset" memory

• Flows (destinations) that map to overflowing bins are logged

• The suspect log is temporarily maintained fast memory cache

• State is periodically transferred to slow memory

• A flow score is computed for each suspect flow

• The suspect flows at each monitor may contain false positives

• The flows are locally rehashed to reduce false positives

DDoS Test — distributed component

• Each monitor publishes list of suspect flows upstream

• Distributed voting protocol used to nominate attack flows

• Many (large) domains are now multi-homed

• No other source-based DDoS systems handle multi-homing

• Unfortunately, much more difficult problem...

• ... and can lead to errors

• Data and Acks can traverse disjoint routers

• Leads to more false positives

• Data for suspicious flows reconciled at rendezvous nodes

• Tests have account for asymmetry in packet rates

• Rendezvous node gathers data from routers on flow path...

• ... and can classify a flow as an attack

Experiments — **Set** up

• Different types of attacks with varying number of attackers

• Trace-driven

Details of Traces

	Bell Labs	Abilene
trace duration	25 min	10 min
number of flows	65,000	235,000
pkt rate per sec (in/out)	1194/1586	55,583/45,867
number of addresses (int/ext)	1291/3445	24,257/23,647
avg # active flows per sec	200	3500

Detection Accuracy vs. Number of bins

Normalized # of bins	Avg. # of false positives	Detection Rate (%)	Detection Time Time (seconds)
0.05	0.00	89	97.95
0.10	0.00	100	27.25
0.20	0.00	100	15.28
0.40	0.00	100	12.47
0.60	0.12	100	11.00

- Bell Labs trace, single attacker, 20 pps attack rate
- 0.20 NB \Rightarrow 40 bins

[°] Accuracy vs. Sampling Rate

Sampling Rate (%)	<i>Avg # of</i> false positives	Detection Rate (%)	Detection Time Time (seconds)
2.5	0.00	72	98.21
5	0.07	99	52.00
10	0.00	100	15.28
20	0.00	100	12.04
40	0.00	100	9.95
60	0.00	100	10.15

- Bell Labs trace, single attacker, 20 pps attack rate
- 10% sampling rate \Rightarrow 110 pps

1

More complicated attacks

• Test different scenarios on Abilene Trace

100K pps at root

3500 active flows on average

Average flow: 34 pps

- Deployment Scope [15 monitors] \Rightarrow top 4 levels of domain
- Normalized number of bins $[0.2] \Rightarrow 700$ bins/monitor
- Sampling rate $[0.1] \Rightarrow 10$ K pps at each monitor

Т

Attack Rate vs. Detection Accuracy

Attack Rate (pps)	Avg # of False Pos.	Detection Rate (%)	Detection Time (sec)	Overhead (Bps)
10	0.25	99	106.25	77.50
20	0.12	100	27.88	43.75
50	0.25	100	13.35	39.85
100	0.25	100	10.14	44.52

• Eight simultaneous attacks; average regular flow rate: 34 pps Attacks start every 15 seconds; last for 8 minutes

Multiple Attackers

Aggregate Attack Rate	# of Attackers	Avg # of False Pos.	Detect. Rate (%)	Detect. Time (sec)	Overhead (Bps)
20	1	0.12	100	27.89	43.75
100	5	0.25	100	12.38	45.38
200	10	0.25	100	10.21	73.84

• Average flow rate: 34 pps

Multiple Attackers

Aggregate Attack Rate	# of Attackers	Avg # of False Pos.	Detect. Rate (%)	Detect. Time (sec)	Overhead (Bps)
100	1	0.25	100	10.14	44.52
100	5	0.25	100	12.38	45.38
100	10	0.12	99	14.71	72.02

• Average flow rate: 34 pps

Pulse Attacks

	Det	. Rate	(%)	De	t. Time (s	ec)	Ov	rerhead (E	Bps)
Rate (pps)	1/1	1/3	1/5	1/1	1/3	1/5	1/1	1/3	1/5
20	94	5	2	130.04	91.88	58.00	90.66	118.23	74.90
40	100	99	47	31.38	145.69	240.25	43.39	85.46	103.74
60	100	100	97	19.32	53.07	119.43	38.25	51.90	68.20
80	100	100	100	15.93	33.75	67.88	40.16	47.98	51.20
100	100	100	100	13.82	29.03	47.55	38.27	41.42	47.04

• $1/x \Rightarrow$ pulse with 1 second on time, x seconds off time

bhattacharjee, LTS S'05 Multi-homed domain experiments

- \equiv frac. of all outgoing addresses that use path p• A^p_{out} • A^p_{in} \equiv frac. of all incoming addresses that use path p
- Example: $A_{out}^p = 50\%$ and $A_{in}^{p} = 20\%$ Internet \Rightarrow 30% of the flows are asymmetric and use p as the Х В outgoing path (and q as in-С coming) q р \Rightarrow 20% of the symmet-

ric flows in the domain use path p for both incoming and outgoing packets

Multi-homed Domains: Accuracy vs. Flow Asymmetry Т

A_{out}^p	A_{in}^p	# False Pos.	Detect. Time (sec)	Overhead (Bps)
	0%	1.12	53.60	7434.7
	20%	0.00	37.19	7829.8
10%	40%	0.00	29.61	10797.6
	60%	0.00	27.34	13575.2
	80%	0.00	28.36	16263.6
	100%	0.12	33.05	18536.0
	0%	1.38	56.57	12671.2
	20%	0.25	35.32	10586.1
	40%	0.00	27.81	8256.7
50%	60%	0.00	26.48	8301.4
	80%	0.25	28.98	10687.8
	100%	0.38	43.83	12676.1

Local Oracle (Hardware)

- Pass-through processor on NIC with a physically secure key \mathcal{K} Cannot be controlled via host software
- Passive monitor of all network traffic

Logs all headers+packet snippet

• Can also be deployed per subnet

Local Oracle (Hardware)

- Pass-through processor on NIC with a physically secure key ${\cal K}$ Cannot be controlled via host software
- Passive monitor of all network traffic

Log requires 10 MB storage/minute (avg. for 100Mb link)

worst case 1 order of magnitude worse.

• Log dumped to sender when packet with ${\cal K}$ intercepted

Local Oracle (Hardware)

- Pass-through processor on NIC with a physically secure key \mathcal{K} Cannot be controlled via host software
- Passive monitor of all network traffic

Attackers (can) know of the oracle, but cannot modify its operation

What can such a complete detection system do ...?

 Detect different attacks — DDoS, malicious packets, worms, intrusion detection, ...

More capable than single node systems

Incrementally deployable

• Complete single packet traceback (using local oracle)

Post-mortem of attacks

Implementation

- Detailed packet level simulations complete
- Partial in-kernel Linux implementation
- FPGA based hardware implementation

Current hardware would process 2.4 Gbps links at line rates 20% sampling would allow implementation on 10Gbps links

Future work

• Extend tests to include more attack types

UDP, ICMP traffic

• History-based attack detection

Current system is entirely stateless

• Better compression algorithms for logger

• Distributed PKI work with Mike Marsh